New Publication on Sensitivity Analysis

An adaptive Mantel-Haenszel test for sensitivity analysis in observational studies.

Rosenbaum PR, Small DS

In a sensitivity analysis in an observational study with a binary outcome, is it better to use all of the data or to focus on subgroups that are expected to experience the largest treatment effects? The answer depends on features of the data that may be difficult to anticipate, a trade-off between unknown effect-sizes and known sample sizes. We propose a sensitivity analysis for an adaptive test similar to the Mantel-Haenszel test. The adaptive test performs two highly correlated analyses, one focused analysis using a subgroup, one combined analysis using all of the data, correcting for multiple testing using the joint distribution of the two test statistics. Because the two component tests are highly correlated, this correction for multiple testing is small compared with, for instance, the Bonferroni inequality. The test has the maximum design sensitivity of two component tests. A simulation evaluates the power of a sensitivity analysis using the adaptive test. Two examples are presented. An R package, sensitivity2x2xk, implements the procedure.

link

ABOUT CCI

The Center for Causal Inference (CCI) is a research center that is operating under a partnership between Penn’s Center for Clinical Epidemiology and Biostatistics (CCEB), the Department of Biostatistics and Epidemiology, Rutgers School of Public Health, and Penn’s Wharton School. The mission of the CCI is to be a leading center for research and training in the development and application of causal inference theory and methods.

CONTACT US

6th Floor Blockley Hall 
423 Guardian Drive 
Philadelphia, PA 19104 

Email us with general inquiries